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Abstract. A conformal invariant asymptotic expansion approach to solving real nonlinear
physical systems is proposed. In particular, the(3 + 1)-dimensional Kadomtsev–Petviashvili
(3DKP) equation is solved approximately by using the conformal invariant asymptotic expansion.
In some special cases, the approximate solutions of the 3DKP become exact. Many types of
(3 + 1)-dimensional Painlev́e integrable models are obtained at the same time.

1. Introduction

Integrable models in(1 + 1) and (2 + 1) dimensions have been studied deeply by many
mathematicians and physicists and widely applied in many fields such as condensed matter
physics [1], fluid mechanics [2], plasma physics [3], optics [4], communications [5], chemistry
[6] and biology [7]. However, there is no known real significant(n + 1)-dimensional
(n > 3) nontrivial nonlinear integrable model except the ‘(2 + 2)’-dimensional self-dual
Yang–Mills field equation [8]. Because the real physical space is(3 + 1) dimensional, many
physicists and mathematicians have been trying to find some nontrivial(3 + 1)-dimensional
integrable models [8, 9] for a long time. However, there has been little progress in this
direction.

Recently, one of the present authors (Lou) proposed some possible directions to find some
nontrivial integrable models in higher dimensions under some special conditions. According to
the fact that all the known(2+1)-dimensional integrable models possess a common generalized
Virasoro-type symmetry algebra [10], a general method to obtain some integrable models under
the condition that they possess the generalized Virasoro symmetry algebra [11] is proposed. It
is also known that every(1+1)- and(2+1)-dimensional integrable model possesses a Schwartz
form which is conformal invariant. Based on this fact, Lou pointed out that starting from a
conformal invariant form is one of the most convenient ways to obtain higher-dimensional
integrable models [12]. In [13, 14], the authors have extended the Painlevé analysis approach
to a new form such that many higher-dimensional Painlevé integrable models can be obtained
from lower-dimensional ones.

In Lou, and Lou and Xu’s papers [13, 14], some important questions need to be answered
further. One of the most important questions is whether those higher-dimensional Painlevé
integrable models obtained from the extended Painlevé analysis have real physical significance?
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Can they describe real nonlinear physical phenomena? Generally, most(1 + 1)- and(2 + 1)-
dimensional integrable models are obtained by ignoring some not very important factors from
the real physical models with the same and/or higher dimensions. It suggests that(3 + 1)-
dimensional integrable models may be obtained by means of some reasonable approximations
from actual(3 + 1)-dimensional models. Combining the conformal invariant theory with the
extended Painlev́e analysis approach may be one possible way to find higher-dimensional
integrable models with real physical applications.

In this paper, we would like to use the invariant Painlevé analysis approach to solve
real higher-dimensional nonlinear physical problems and find some higher-dimensional
Painlev́e integrable models in the same dimensions which can be considered as reasonable
approximations of real physical problems.

In order to make this approach clear, we take the(3 + 1)-dimensional KP equation

(ut + 6uux + 6uxxx)x + huyy + kuzz = 0 (1)

as a simple example. Equation (1) describes the dynamics of solitons and nonlinear waves
in plasmas and superfluids [15–17]. Whenu is z independent, equation (1) is completely
integrable and then many kinds of solution can be obtained from some different approaches
such as inverse scattering transformation, bilinear method, etc. Because of the nonintegrability
of (1), it is difficult to give some exact solutions of (1). Some authors treat it numerically [15].
Now, we use a method of conformal invariant expansion to study the(3 + 1)-dimensional
nonintegrable KP equation (1) approximately and analytically.

The paper is organized as follows. In section 2, a general approximation method
(conformal invariant expansion) to solve a real physical model in any dimensions is proposed.
In this approach, a nonintegrable model is solved approximately by means of Painlevé
integrable models in the same dimensions. Taking the(3 + 1)-dimensional KP equation as
a simple example, many new higher-dimensional conformal invariant models are derived in
section 3. Section 4 is devoted to discussing the Painlevé integrability of these resulting
models. The approximate solutions of the(3 + 1)-dimensional KP equation are shown in
section 5. Section 6 includes a summary and discussion.

2. General theory

For a givenn-dimensionalN th-order PDE,

F(x0 ≡ t, x1, x2, . . . , xn, u, uxi , uxixj ,..., uxi1xi2 ...xiN ) = 0 (2)

where the functionF is a polynomial function of the fieldu and its derivatives. Expanding the
solutions of (2) near the singular manifoldφ, we should have the form

u =
∞∑
j=0

ujφ
j+α (3)

whereα is a negative integer. Substituting (3) into (2), we can obtain a recursion relation to
determine the expansion coefficientsuj

G(j) uj = fj (xi, φxi , φxi1xi2 , . . . , u1, u2, . . . , uj−1) ≡ fj (4)

whereG(j) is a polynomial functionj . Equation (2) possesses the Painlevé property, if
G(j) = (j + 1)(j − j1)(j − j2) · · · (j − jN−1), wherej1, j2, . . . jN−1 are all positive integers
and the resonance conditions

fji = 0 (i = 1, 2, . . . , N − 1) (5)
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are satisfied identically. If equation (2) is not Painlevé integrable, equation (4) could still be
taken as a recursion formula to obtain some special solutions of (2). In this paper, we would
like to obtain some approximate solutions of (2) and integrable models corresponding to (2)
with the help of the recursion relation (4). Because the expansion (3) is valid only forφ small,
we ignore those terms higher thanφM+α and fixφ by uM = 0, that is to say, the truncated
expansion

u =
M∑
j=0

ujφ
j+α uM = 0 (6)

can be considered as an approximate solution of equation (2) up toφM+α. Obviously, the larger
theM is, the better the exactitude of the solution (6) would be. The expansion coefficients
uj in (6) can be determined from (2). Substituting equation (6) into (2), one can obtain an
equation in the power form ofφ, say,

φ−K
[ M∑
j=0

Fjφ
j + O

(
φM+1

)] = 0 (4′)

where the positive integerK is determined by the leading order of the PDE (2) andFj (j =
0, 1, 2, . . . ,M) are polynomial functions ofuj (j = 0, 1, 2, . . . ,M) and the derivatives of
uj andφ. SolvingFj = 0, j = 0, 1, 2, . . . ,M for uj which are equivalent to those given
by (4), we know that the expansion coefficientsuj are functions of the derivatives ofφ and
J 6 N − 1 arbitrary functions which are some ofuj1, uj2, . . . , ujN−1. If the original PDE (2)
possesses the Painlevé property, thenJ , the number of the arbitrary functionsuj , is equal to
N − 1. OtherwiseJ < N − 1. So ifJ = N − 1 andM > jN−1,

uM = 0 (7)

shows an equation ofφ and the arbitrary functionsuj1, uj2, . . . , ujN−1. The solution of
equation (7) determines the concrete form of (6) which can be considered as an approximate
solution of (2) though some possible arbitrary functions have been included because the original
equation (2) is correct up toφM+1th order (see equation (4′)). Usually,N arbitrary functions
are allowed to be included in the general solution of anN th-order PDE. In our approximate
solution, onlyN−1 arbitrary functions have been included because another arbitrary function
φ has been fixed by (7). If we takeM < jN−1, there will be fewer arbitrary functions in our
approximate solution.

If the original PDE (2) is not Painlevé integrable, thenJ < N − 1 which means
N − 1− J resonance conditions of (4) are not satisfied identically and thenN − 1− J
additional conditions are introduced for theJ arbitrary functions andφ. In this case we
can still obtain some approximate solutions of (2) by solving theseN − 1− J additional
conditions and (7) forJ arbitrary functions andφ.

It is worth pointing out that after substituting (6) into (2), one can find that there may be
a special selection

u0 = u1 = · · · = u−α−1 = 0

for our approximate solution that means the approximate solution is analytical with respect to
the manifoldφ = 0. In this case we can always selectu−α, u−α+1, . . . u−α+N−1 as arbitrary
constants, and fix other coefficients by the recursion relation and the approximate solution of
(2) reads

u =
α+M∑
j=0

u−α+jφ
j uM = 0.
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Finally, it is worth pointing out that if we want to obtain some special solutions of (2)
with more exactitude, we may do so by fixing the arbitrary functions (and constants) in two
different ways.

(a) TheJ arbitrary functions may be fixed from (4) byuM+1 = uM+2 . . . = uM+J = 0 (or
equivalently from (4′) by FM+1 = FM+2 . . . = FM+J = 0 with uM+1 = uM+2 . . . =
uM+J = 0) such that the equation (4′) and then (2) is valid up to theφM+J th order and the
related approximate solution is valid up to theφM+J+αth order.

(b) TheJ arbitrary functions may be fixed appropriately from (4′) such that the truncated
solution (6) becomes an exact solution of the original PDE (2). More details on these
points will be seen from the later concrete example.

Because there are many special interesting properties for integrable models, we hope
that equation (7) is integrable at least under some special conditions. To our knowledge, all
of the known Painlev́e integrable models possess conformal invariant forms. Therefore, if
equation (7) is conformal invariant, it may be a candidate for Painlevé integrable equation.
Because of the singular manifoldφ being arbitrary, it is possible to make (7) conformal
invariant. Actually, in(1 + 1)-dimensions, Conte had changed the expansion functionφ

asξ = ((φx/φ) − (φxx/2φx))−1 such that the expansion coefficients are conformal invariant
[18]. Similarly, we can exchange the expansion functionφ for

ξ =
(
φxn

φ
− φxnxn

2φxn

)−1

(8)

wherexn expresses any one of the variables(x0, x1, x2, . . . , xn), while the corresponding
approximation expansion (6) is changed to

u =
M∑
j=0

u′j ξ
j+α. (9)

From equation (8), one can easily prove the following identities:

ξxi = Pi − Pixnξ + 1
2(PiS + Pixnxn)ξ

2 i = 0, 1, 2, . . . , n (10)

where the functions

Pi ≡ φxi

φxn
and S ≡ φxnxnxn

φxn
− 3

2

(
φxnxn

φxn

)2

≡ {φ, xn} (11)

are all conformal invariant. In other words,Pi and S are invariant under the M̈obious
transformation

φ −→ a + bφ

c + dφ
ad 6= bc. (12)

It is easy to see that all the expansion coefficientsu′j in (9) are conformal invariant because
they are functions ofPi , S and arbitrary function{u′j1

, u′j2
, . . . , u′jN−1

}. Therefore, the equation
related to the truncated expansion coefficientu′M

u′M = 0 (13)

is conformal invariant. Whether equation (13) is integrable under the condition that it possesses
the Painlev́e property should be verified further by means of Painlevé analysis.

According to Lou’s idea proposed in [12], the conformal invariant equation (13) may be
Painlev́e integrable. Whence (13) is proved to be Painlevé integrable, then equation (2) is solved
approximately by a Painlevé integrable model in the same dimensions and the approximate
solution (9) is valid up toξM+α.
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3. Conformal invariant expansion for the (3 + 1)-dimensional KP equation

In this section, we use the general theory of the last section to the real physical model,(3 + 1)-
dimensional KP equation. Substituting (9) into the(3 + 1)-dimensional KP equation (1), and
taking

ξ =
(
φx

φ
− φxx

2φx

)−1

(14)

we know thatu of (1) can be expanded as

u =
M∑
j=0

ujξ
j−2 (15)

with

u0 = −2P 2
1 or u0 = 0 (16)

by the leading-order analysis. Starting fromu0 = −2P 2
1 , we can obtain the recursion relation

aboutuj

(j + 1)(j − 4)(j − 5)(j − 6)uj = fj (S, Pi, Pixi , . . . , u0, . . . , uj−1) ≡ fj (17)

wherefj is a complicated function of the indicated variables. Because all the expansion
coefficientsuj in (17) are functions ofPi , S and{uj1, uj2, . . .}, the expansion coefficientsuj
are conformal invariant. The first three expressions ofuj read

u1 = 2P1P1x + 2P1x (18)

u2 = − 1

6P 2
1

(
4SP 4

1 + 4P 3
1P1xx + P 2

1xP
2
1 + 4P 2

1P1xx

+P1P0 + 2P 2
1xP1 + kP 2

3 + hP 2
2 − 3P 2

1x + 4P1xxP1
)

(19)

u3 = 1

24P 4
1

(
16hP1P1yP2 − 20hP1xP1P

2
2 + 20kP 2

1P3P3x + 16kP1P1zP3 + 20hP 2
1P2xP2

−16hP1P2P2x − 16kP1P3P3x − 20kP1xP1P
2
3 − 4kP1xP

2
3 − 4hP1xP

2
2

+4kP 2
1P3z + 4hP 2

1P2y − 8P 2
1P0x + 4P 2

1P1xxx + 4P 3
1P1xxx − 8P 2

1P1xxP1x

+4P 3
1xP1− 16P1P1xxP1x + 12P 3

1P0x + 8P 4
1P1xS + 12P 2

1P0t + 4P 4
1P1xxx

+4P 5
1Sx − 12P 2

1P0P1x − 4P1xP1P0 + 12P 3
1x

)
. (20)

Substituting (11), (18)–(20) into (17), one can find

f4 = f5 = 0 f6 6= 0 (21)

that means the(3 + 1)-dimensional KP equation (1) is not Painlevé integrable.
To obtain some approximate solutions of (1) we can takeuM = 0 for an appropriateM

and neglect the terms higher thanξM−2 for smallξ . ForM = 2, theφ equation is given by
u2 = 0, i.e.

{φ, x} + φt

4φx
+ k

φ2
z

4φ2
x

+ h
φ2
y

4φ2
x

= 0 (22)

and the corresponding approximate solution of (1) reads

u = u0

ξ2
+
u1

ξ
. (23)
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ForM = 3, the functionφ should satisfy(
φt

φx
+ {φ; x} + h

2

φ2
y

φ2
x

+
k

2

φ2
z

φx

)
x

+ h

(
φy

φx

)
y

+ k

(
φz

φx

)
z

= 0 (24)

while the approximate solution of (1) is

u = u0

ξ2
+
u1

ξ
+ u2. (25)

If substituting (9) withu0 = 0 into (1), we can findu1 = 0 andu2, u3, u4, u5 can be taken as
arbitrary functions. Taking

u2 = a1 u4 = a2 u3 = u5 = 0 (26)

then the equation foru6 = 0 reads

6a1 + 4
φxxx

φx
− 6

φ2
xx

φ2
x

+
φt

φx
+ h

φ2
y

φ2
x

+ k
φ2
z

φ2
x

= 0 (27)

wherea1 and a2 are arbitrary constants. The corresponding approximate solution of (1)
becomes

u = a1 + a2ξ
2. (28)

In the above discussions, we have fixedξ as given by equation (14). Actually, similar results
can be obtained for different selections ofξ , say, we can takeξ = ξ1 as

ξ1 =
(
φz

φ
− φzz

2φz

)−1

. (29)

Substituting (9) with (29) into (1) and using the same procedure, we can obtainα = −2,

u0 = −2P 2
1 = −2

φ2
x

φ2
z

or u0 = 0. (30)

The first three expansion coefficients corresponding tou0 = −2(φ2
x/φ

2
z ) read

u1 = −2
(
φ2
xφzz − φxxφ2

z

)
φ3
z (31)

u2 = − 1

6φ4
z φ

2
x

(
4φxφ

4
z φxxx − 3φ4

z φ
2
xx + φxφtφ

4
z + hφ2

yφ
4
z + 3φ4

xφ
2
zz + kφ6

z − 6φ2
xφzφxxφzz

)
(32)

u3 = φz

6φ4
x

((
φt

φx
+ {φ, x} + h

2

φ2
y

φ2
x

)
x

+ h

(
φy

φx

)
y

+
k

2

(
φ2
z

φ2
x

)
x

+ k

(
φz

φx

)
z

)
. (33)

ForM = 2 or 3, the forms of approximate solutions of (1) are the same as (23) or (25), but the
corresponding functionφ is given by

4φxφ
4
z φxxx − 3φ4

z φ
2
xx + φxφtφ

4
z + hφ2

yφ
4
z + 3φ4

xφ
2
zz + kφ6

z − 6φ2
xφ

2
z φxxφzz = 0 (34)

for M = 2 and(
φt

φx
+ {φ, x} + h

2

φ2
y

φ2
x

)
x

+ h

(
φy

φx

)
y

+
k

2

(
φ2
z

φ2
x

)
x

+ k

(
φz

φx

)
z

= 0 (24)

forM = 3, respectively. In the same way, if we takeu0 = 0 for ξ = ξ1, the results readu1 = 0
andu2, u3, u4, u5 being arbitrary functions. Takingu2 = a1, u4 = a2 andu3 = u5 = 0, one
can obtain the equation ofu6 = 0

12φ3
xφ

2
z φzzx + 18φ2

z φ
2
xφzzφxx − 48φzφ

3
xφzzφzx + hφ2

yφ
4
z + 6a1φ

2
xφ

4
z + φtφxφ

4
z − 24φ3

z φxφzxφxx

+3φ4
z φ

2
xx + 36φ2

z φ
2
xφ

2
zx + 4φxφ

4
z φxxx − 12φ2

xφ
3
z φzxx + kφ6

z + 9φ4
xφ

2
zz = 0 (35)
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while the approximate solution of (1) is

u = a1 + a2ξ
2 (36)

up toξ4, wherea1 anda2 are arbitrary constants.
Whenφ is z (or y) independent, equation (24) is just the(2 + 1)-dimensional KP equation

in its Schwarz form. Ifφ is bothy andz independent then both equation (22) and (24) reduce
back to the(1 + 1)-dimensional Schwarz KdV equation.

4. Painlev́e integrability of resulting equations

It is clear that (22), (24), (27), (34) and (35) are all conformal invariant. In [12], Lou had pointed
out that many kinds of quite general conformal invariant forms are Painlevé integrable. Now
we hope to know whether the real approximate equations, (22), (24), (27), (34) and (35) are
Painlev́e integrable or not. Actually, equation (22) is just one of special case in [12]. So (22)
is Painlev́e integrable. In order to prove the Painlevé integrability of (24), (27), (34) and (35),
we slightly enlarge them to form some more general systems. From equation (24), a slightly
enlarged system has the form

Cx
(
C4 + hV 2 +LC + kW 2 + 4CCxx − 3C2

x

)− C2
(
Cxxx +Lx + aVy + kWz

) = 0 (37)

Ct = Lx (38)

Vt = Ly (39)

Wt = Lz. (40)

Equation (37) can be obtained directly from (24) by using the transformation,

φ = exp(f ) fx = C fy = V fz = w ft = L (41)

as in [12] and equations (38)–(40) are three consistent conditions of the transformation (41).
We call (38)–(40) as an enlarged system of (24) because, for the transformation (41), there
exist three other consistent conditions,Cy = Vx , Cz = Wx andVz = Wy , though the relations
Cyt = Vxt , Czt = Wxt andVzt = Wyt are guaranteed by (38)–(40). In other words, only a
subset of the solutions of (37)–(40) are related to the solutions of (24).

In the same way, the corresponding enlarged systems of (27), (34) and (35) have the forms

6a1C
2 + 4CCxx − 2C4 − 6C2

x +LC + hV 2 + kW 2 = 0 (42)

Ct = Lx (43)

Vt = Ly (44)

Wt = Lz (45)

CLW 4 + hV 2W 4 − 6C2W 2CxWz − 2C4W 4 + 4CW 4Cxx

+kW 6 + 3C4W 2
z − 3W 4C2

x = 0 (46)

Ct = Lx (47)

Vt = Ly (48)

Wt = Lz (49)

and

−hV 2W 4 − LCW 4 − 6a1C
2W 4 − kW 6 + 2C4W 4 − 12C3W 2Czz − 18W 2C2WzCz

−3W 4C2
x + 24W 3CCzCx + 48WC3WzCz − 9C4W 2

z + 12C2W 3Czx

−36W 2C2C2
z − 4CW 4Cxx = 0 (50)
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Ct = Lx (51)

Vt = Ly (52)

Wt = Lz (53)

respectively. Now using the standard Painlevé analysis, we can prove that all the enlarged
systems related to (24), (27), (34) and (35) possess the Painlevé property.

After finishing the leading order analysis of (37)–(40), we know thatC,L,W andV ,
should be expanded as

C =
∞∑
j=0

Cjφ
j−1 L =

∞∑
j=0

Ljφ
j−1

W =
∞∑
j=0

Wjφ
j−1 V =

∞∑
j=0

Vjφ
j−1

(54)

with

C0 = ±φx V0 = ±φy W0 = ±φz L0 = ±φt . (55)

Substituting (54) into (37)–(40), we know that the resonances occur at

j = −1, 1, 1, 1, 1, 2 (56)

and the resonance conditions atj = 1, 2 read

C2
0

(−2φxφxxC0 +C0x
(
φ2
x +C2

0

)
+ 4C1φ

3
x − 4C0C1φx

) = 0 (57)

C0t = L0x (58)

V0t = L0y (59)

W0t = L0z (60)

C3
0φxxx − C2

0C0xφxx − C2
0φxC0xx − 8C1C

2
0φxφxx +C3

0φt + kC2
0W0φz + hC2

0V0φy

+C1x
(−C2

0φ
2
x +C4

0

)
+C0C

2
0xφx +C0x

(
4C1C0φ

2
x + 4C3

0C1
)

+φx
((

3C2
0C2 + 6C2

1C0
)
φ2
x − 3C4

0C2 − 6C2
1C

2
0 − C2

0L0

+
(−kW 2

0 − V 2
0 h
)
C0
) = 0. (61)

Obviously, (57)–(61) are satisfied identically because of (55). So the equation system (37)–
(40) possess the Painlevé property, i.e. the system (37)–(40) is Painlevé integrable and then its
narrowed system (24) is Painlevé integrable naturally.

Substituting (54) into (42)–(45), we can see that the resonances occur at

j = −1, 1, 1, 1, 1 (62)

and the resonance conditions atj = 1 read

−4C0
(−C0xφx + 2C2

0C1 +C0φxx − 2C1φ
2
x

) = 0 (63)

V0t − L0y = 0 (64)

W0t − L0z = 0 (65)

C0t − L0x = 0. (66)

It is easy to see that all the resonance conditions (63)–(66) are also satisfied. So the equation
system (42)–(45) possess the Painlevé property and equation (27) is a(3 + 1)-dimensional
Painlev́e integrable model.

In the same way, substituting (54) into (46)–(49), one can see that all five of the needed
resonances located at

j = −1, 1, 1, 1, 1 (67)
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have the forms

−2C0W0
(
W 3

0φxC0x + 2W 3
0C0φxx − 10W 2

0C0W1φ
2
x − 4W 3

0φ
2
xC1 + 3C3

0φzW0z − 6W0C
2
0C1φ

2
z

−3W0C
2
0φxW0z − 3W 2

0C0φzC0x + 6W0C
2
0φzφxW1 + 6W 2

0C0φzφxC1

+4W 2
0C

3
0W1 + 4W 3

0C
2
0C1

) = 0 (68)

C0t − L0x = 0 (69)

V0t − L0y = 0 (70)

W0t − L0z = 0 (71)

and they are all satisfied naturally because of (55). That is to say equation (34) is also a
Painlev́e integrable model. Substituting (54) into (50)–(53), we see that all five of the required
resonances are also located at

j = −1, 1, 1, 1, 1 (72)

and the resonance conditions atj = 1 read

−15C3
0W0zφz + 6C3

0W0φzz + 24C2
0W0φzC0z − 6C2

0W
2
0φzx + 9C2

0W0φxW0z + 2C0W
3
0φxx

−18C0W
2
0φxC0z − 9C0W

2
0φzC0x + 7W 3

0φxC0x

+W1C0
(
4C2

0W
2
0 − 36C2

0φ
2
z + 54C0W0φxφz − 22W 2

0φ
2
x

)
+
(
4C2

0W
2
0 − 18C2

0φ
2
z + 18C0W0φxφz − 4W 2

0φ
2
x

)
C1W0 = 0 (73)

C0t − L0x = 0 (74)

V0t − L0y = 0 (75)

W0t − L0z = 0. (76)

Having considered (55), equations (73)–(76) are all satisfied. Obviously, the equation system
(50)–(53) possesses the Painlevé property. So equation (35) is also integrable under the
meaning that it possesses a variant form with the Painlevé property.

Now we have obtained five new(3 + 1)-dimensional models possessing Painlevé
integrability from the(3+1)-dimensional nonintegrable KP equation (1) through the conformal
invariant expansion approach. The solutions of these models can be used to express the
solutions of original(3 + 1)-dimensional KP equations approximately in some special ways.

5. Solitary wave solutions

To find some concrete approximation solutions of equation (1), we should solve the Painlevé
integrable models (22), (24), (27), (34) and (35). Because these models are conformal
invariant, it is easy to verify that these conformal invariant equations all possess kink-type
soliton solutions. For model (24), the corresponding kink-type plane soliton solution has the
form

φ = A +B exp 2(l1x + l2y + l3z +wt)

C +D exp 2(l1x + l2y + l3z +wt)
. (77)

When

w = 8l41 − kl23 − hl22
l1

(78)

equation (77) is also a solution of (22) and (34). The correspondingξ is given by

ξ = − 1

l1

A +B exp 2(l1x + l2y + l3z +wt)

A− B exp 2(l1x + l2y + l3z +wt)
. (79)
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While the related approximation solution of (1) reads

u = −2l21
(A +B exp 2(l1x + l2y + l3z +wt))2

(A +B exp 2(l1x + l2y + l3z +wt))2
− A1

6l22
(80)

where

A1 = −8l41 + hl22 +wl1 + kl23. (81)

The solution (80) can be written in the standard form

u = −
(

2l21 +
A1

6l22

)
+ 2l21

(
sech

(
l1x + l2y + l3z +wt + ln

(
B

A

)1/2))2

. (82)

If the arbitrary constantsl2 andw are taken as

l2 = (−(16l21 + h)(−12l41 + l23k))
1/2

16l21 + h
w = 4l41 + l22h + l23k

2l1
(83)

andu given by (82) becomes an exact solution of (1). We can also verify that

φ = A− B exp 2
(
l1x + l2y + l3z +

(−6l21a1 + 8l41 − hl22 − kl23
)
t/l1

)
A +B exp 2

(
l1x + l2y + l3z +

(−6l21a1 + 8l41 − hl22 − kl23
)
t/l1

) (84)

is a kink-type plane solitary wave solution of both (27) and (35). The correspondingξ is given
by

ξ = −2

li

A− B exp 2
(
l1x + l2y + l3z +

(−6l21a1 + 8l41 − hl22 − kl23
)
t/l1

)
A +B exp 2

(
l1x + l2y + l3z +

(−6l21a1 + 8l41 − hl22 − kl23
)
t/l1

) (85)

i = 1, for (27) andi = 3 for (35). In this case, the approximation solution of (1) reads

u = a1 + a2ξ
2

= a1 +
a2

l2i

(
1− sech2

(
l1x + l2y + l3z +

(−6l21a1 + 8l41 − hl22 − kl23
) t
l1

+ ln

(
B

A

)1/2))
.

(86)

If the arbitrary constantsa1 anda2 are taken as

a1 = 2l21 a2 = −2l21l
2
i (87)

u given by (86) is an exact solution of equation (1). Generally, the approximate procedure is
valid for ξ being small. In the plane soliton case,ξ given by (79) is small which meansu given
by (80) is valid near the soliton centre. While theξ given by (85) is small and then means that
u given by (86) is only valid far away from the soliton centre.

6. Summary and discussion

In this paper we have proposed a simple method to solve higher-dimensional nonlinear
problems by means of the Painlevé integrable models in the same dimensions. Taking the
(3 + 1)-dimensional KP equation as a concrete example, we have obtained many(3 + 1)-
dimensional Painlev́e integrable models. The first one is just a special case proposed by Lou
in [12]. Because the resulting equations possess conformal invariance, the plane solitary wave
solutions of the model can be obtained easily. Generally, the solitary waves are approximate for
the original model. If the arbitrary constants are selected suitably, the approximate solutions
become exact.

In [12–14], Lou has proposed many types of conformal invariant equations and those
equations are Painlevé integrable. There are two important problems left in his paper.
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(a) Can one find the physical applications of those models or can one find some types of
models with conformal invariance and the Painlevé property from real physical models? (b)
Are those Painlev́e integrable models integrable under other meanings? In this paper, we have
offered a positive answer for the first question. Using the conformal invariant expansion to any
real physical model in any dimensions, we can obtain some approximate solutions by means
of the Painlev́e models. The second question is still open. It is worth further study to see
whether the models obtained here are integrable under other traditional methods.
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