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Abstract. A conformal invariant asymptotic expansion approach to solving real nonlinear
physical systems is proposed. In particular, tBe+ 1)-dimensional Kadomtsev—Petviashvili
(3DKP) equation is solved approximately by using the conformal invariant asymptotic expansion.
In some special cases, the approximate solutions of the 3DKP become exact. Many types of
(3 + 1)-dimensional Painlgvintegrable models are obtained at the same time.

1. Introduction

Integrable models i1 + 1) and (2 + 1) dimensions have been studied deeply by many
mathematicians and physicists and widely applied in many fields such as condensed matter
physics [1], fluid mechanics [2], plasma physics [3], optics [4], communications [5], chemistry
[6] and biology [7]. However, there is no known real significant+ 1)-dimensional

(n > 3) nontrivial nonlinear integrable model except thg % 2)’-dimensional self-dual
Yang-Mills field equation [8]. Because the real physical spa¢8 #s1) dimensional, many
physicists and mathematicians have been trying to find some nontiviall)-dimensional
integrable models [8, 9] for a long time. However, there has been little progress in this
direction.

Recently, one of the present authors (Lou) proposed some possible directions to find some
nontrivial integrable models in higher dimensions under some special conditions. Accordingto
the fact that all the know(2+ 1)-dimensional integrable models possess a common generalized
Virasoro-type symmetry algebra[10], a general method to obtain some integrable models under
the condition that they possess the generalized Virasoro symmetry algebra [11] is proposed. It
is also known that everl + 1)- and(2+ 1)-dimensional integrable model possesses a Schwartz
form which is conformal invariant. Based on this fact, Lou pointed out that starting from a
conformal invariant form is one of the most convenient ways to obtain higher-dimensional
integrable models [12]. In [13, 14], the authors have extended the Paialalysis approach
to a new form such that many higher-dimensional Painlategrable models can be obtained
from lower-dimensional ones.

In Lou, and Lou and Xu’s papers [13, 14], some important questions need to be answered
further. One of the most important questions is whether those higher-dimensional €ainlev
integrable models obtained from the extended Pa@dealysis have real physical significance?
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Can they describe real nonlinear physical phenomena? Generally(Inogj- and(2 + 1)-
dimensional integrable models are obtained by ignoring some not very important factors from
the real physical models with the same and/or higher dimensions. It suggest3 thé-
dimensional integrable models may be obtained by means of some reasonable approximations
from actual(3 + 1)-dimensional models. Combining the conformal invariant theory with the
extended Painléy analysis approach may be one possible way to find higher-dimensional
integrable models with real physical applications.

In this paper, we would like to use the invariant Paigleanalysis approach to solve
real higher-dimensional nonlinear physical problems and find some higher-dimensional
Painlewe integrable models in the same dimensions which can be considered as reasonable
approximations of real physical problems.

In order to make this approach clear, we take(®e 1)-dimensional KP equation

(e + 6unty + Guuyyy)y + hutyy +ku,, =0 Q)

as a simple example. Equation (1) describes the dynamics of solitons and nonlinear waves
in plasmas and superfluids [15-17]. Wheris z independent, equation (1) is completely
integrable and then many kinds of solution can be obtained from some different approaches
such as inverse scattering transformation, bilinear method, etc. Because of the nonintegrability
of (1), itis difficult to give some exact solutions of (1). Some authors treat it numerically [15].
Now, we use a method of conformal invariant expansion to study3he 1)-dimensional
nonintegrable KP equation (1) approximately and analytically.

The paper is organized as follows. In section 2, a general approximation method
(conformal invariant expansion) to solve a real physical model in any dimensions is proposed.
In this approach, a nonintegrable model is solved approximately by means of Bainlev
integrable models in the same dimensions. Taking(th¢ 1)-dimensional KP equation as
a simple example, many new higher-dimensional conformal invariant models are derived in
section 3. Section 4 is devoted to discussing the Paénietegrability of these resulting
models. The approximate solutions of tf®+ 1)-dimensional KP equation are shown in
section 5. Section 6 includes a summary and discussion.

2. General theory

For a giverm-dimensionalVth-order PDE,
F('xo = ts xls x2» AR ] xi‘l? M! ux," ux,-xj,...s Mx,rlx,z...x,rlv) = 0 (2)

where the functiorF is a polynomial function of the field and its derivatives. Expanding the
solutions of (2) near the singular manifapd we should have the form

U= Zu,ﬂﬁjm 3)
=0

wherea is a negative integer. Substituting (3) into (2), we can obtain a recursion relation to
determine the expansion coefficients

G(j)uj = fj(xia¢xi,¢x,-1x,2"-',ul»MZ, -"71/{‘[—1) = f] (4)

where G(j) is a polynomial functionj. Equation (2) possesses the Paiblgroperty, if
G(j) =G +D( —JjO( —j2)--- (G — jn-1), whereja, jo, ... jy-1 are all positive integers
and the resonance conditions

£, =0 (i=12...,N—-1 (5)
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are satisfied identically. If equation (2) is not Pairdemtegrable, equation (4) could still be
taken as a recursion formula to obtain some special solutions of (2). In this paper, we would
like to obtain some approximate solutions of (2) and integrable models corresponding to (2)
with the help of the recursion relation (4). Because the expansion (3) is valid orlysfoall,

we ignore those terms higher tha** and fix¢ by uy = 0, that is to say, the truncated
expansion

M
W=y up’*  uy =0 ®)
=0

can be considered as an approximate solution of equation (2)afi"to Obviously, the larger
the M is, the better the exactitude of the solution (6) would be. The expansion coefficients
uj in (6) can be determined from (2). Substituting equation (6) into (2), one can obtain an
equation in the power form af, say,

M
"’_K[ZFW +O<¢>M”>} =0 “)
j=0

where the positive integet is determined by the leading order of the PDE (2) &hdj =
0,1,2,..., M) are polynomial functions of; (j = 0,1, 2,..., M) and the derivatives of
ujand¢. SolvingF; = 0,j = 0,1,2,..., M for u; which are equivalent to those given
by (4), we know that the expansion coefficientsare functions of the derivatives gf and

J < N — 1 arbitrary functions which are some®f, u,, ..., u;, ,. If the original PDE (2)
possesses the Painéeproperty, thery, the number of the arbitrary functioms, is equal to
N — 1. Otherwise/ < N — 1. Soif/J =N —1landM > jy_1,

shows an equation ap and the arbitrary functions;,, u;,,...,u;, ,. The solution of
equation (7) determines the concrete form of (6) which can be considered as an approximate
solution of (2) though some possible arbitrary functions have been included because the original
equation (2) is correct up ¥**1th order (see equation’§} Usually, N arbitrary functions
are allowed to be included in the general solution of\th-order PDE. In our approximate
solution, onlyN — 1 arbitrary functions have been included because another arbitrary function
¢ has been fixed by (7). If we takd < jy_1, there will be fewer arbitrary functions in our
approximate solution.

If the original PDE (2) is not Painlévintegrable, then/ < N —1 which means
N — 1—J resonance conditions of (4) are not satisfied identically and tienl — J
additional conditions are introduced for thlearbitrary functions and. In this case we
can still obtain some approximate solutions of (2) by solving thgse 1 — J additional
conditions and (7) fov arbitrary functions ang.

It is worth pointing out that after substituting (6) into (2), one can find that there may be
a special selection

Ug=ur=---=u_oq1=0

for our approximate solution that means the approximate solution is analytical with respect to
the manifoldg = 0. In this case we can always sel@ct,, u_4+1, ... u_q+y_1 as arbitrary
constants, and fix other coefficients by the recursion relation and the approximate solution of
(2) reads

atM

u= E U_gti P’ uy =0.
j=0
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Finally, it is worth pointing out that if we want to obtain some special solutions of (2)
with more exactitude, we may do so by fixing the arbitrary functions (and constants) in two
different ways.

(a) TheJ arbitrary functions may be fixed from (4) bys+1 = upy+2... = uy+s = 0 (01
equivalently from (4 by Fy+1 = Fpyaz... = Fyey = OWith gy = upen... =
uy+; = 0) such that the equation’j4and then (2) is valid up to the"*/th order and the
related approximate solution is valid up to #¥*/**th order.

(b) The J arbitrary functions may be fixed appropriately fromi)(duch that the truncated
solution (6) becomes an exact solution of the original PDE (2). More details on these
points will be seen from the later concrete example.

Because there are many special interesting properties for integrable models, we hope
that equation (7) is integrable at least under some special conditions. To our knowledge, all
of the known Painle® integrable models possess conformal invariant forms. Therefore, if
equation (7) is conformal invariant, it may be a candidate for Paénietegrable equation.
Because of the singular manifolgl being arbitrary, it is possible to make (7) conformal
invariant. Actually, in(1 + 1)-dimensions, Conte had changed the expansion funetion
asé = ((¢./¢) — (¢ /2¢4,))~* such that the expansion coefficients are conformal invariant
[18]. Similarly, we can exchange the expansion funcgoior

br, P )1
= no_ Dhetn 8
: ( ¢ 29, ®)
wherex, expresses any one of the variablaes, x1, x2, ..., x,), while the corresponding
approximation expansion (6) is changed to
M .
w=y uig™ 9)
j=0
From equation (8), one can easily prove the following identities:
Ei=P — P E+3(PS+Py.)E*  i=012...n (10)
where the functions
¢X’ ¢XXX 3<¢XX )2
p=x and §= = — | =) = (e x) (11)
bx, bx, 2\ ¢y,

are all conformal invariant. In other word®; and S are invariant under the Bbious
transformation

+b
2 ¢ ad # bc. (12)
ct+do
It is easy to see that all the expansion coefficierjtsn (9) are conformal invariant because
they are functions oP;, S and arbitrary functiomu’jl, u’jz, e, u’jH}. Therefore, the equation
related to the truncated expansion coefficigpt
uy =0 (13)

is conformal invariant. Whether equation (13) is integrable under the condition that it possesses
the Painle property should be verified further by means of Paialevalysis.

According to Lou’s idea proposed in [12], the conformal invariant equation (13) may be
Painlee integrable. Whence (13) is proved to be Paialetegrable, then equation (2) is solved
approximately by a Painlévintegrable model in the same dimensions and the approximate
solution (9) is valid up tg¥*,
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3. Conformal invariant expansion for the (3 + 1)-dimensional KP equation

In this section, we use the general theory of the last section to the real physical (Bad®k
dimensional KP equation. Substituting (9) into 3+ 1)-dimensional KP equation (1), and

taking
¢ P )‘1
=|—- 14
: ( b 2, ()
we know that: of (1) can be expanded as
M .
M:Zldjsjiz (15)
j=0
with
uo = —2P2 or uo=0 (16)

by the leading-order analysis. Starting frag= —2P2, we can obtain the recursion relation
abouty

(.] +l)(.] _4)(] _5)(.] _6)1/{/ = f](Sa Pi’ Pix,'7 <. Uo,s 7”]—1) = f] (17)

where f; is a complicated function of the indicated variables. Because all the expansion
coefficientsu; in (17) are functions of;, S and{uj,, u,, ...}, the expansion coefficients
are conformal invariant. The first three expressions afead

up = 2P Py, + 2Py, (18)
1
up = —W(4SP14 +4P2Py,, + PEPE+A4PEPy,
1
+Py Py + 2P2 Py + kP2 + hP? — 3PZ + 4Py, P1) (19)
1
T (16 PPy, P, — 20h Py, Py P + 20k PZ P3Py, + 16k P Py, P3 + 200 PE Py, P2
1
—16h Py P2 Py, — 16k P1 P3Py, — 20k Py, P1PZ — 4k P, PZ — 4h Py, P
+4k PZ P3, + 4h P? Py, — 8PZ Py, + 4P7Piyyy + 4P2P1yy, — 8P2Py, Py,
+4P2 Py — 16P P1y, P + 12P3Po, + 8P P, S + 12P7 Py, + 4P} P1yyy
+4P72S, — 12PZPoPy, — 4Py PPy + 12P1). (20)
Substituting (11), (18)—(20) into (17), one can find
fa=fs=0 fe#0 (21)

that means th€3 + 1)-dimensional KP equation (1) is not Paingewtegrable.

To obtain some approximate solutions of (1) we can take= 0 for an appropriaté/
and neglect the terms higher tha#{ =2 for smallé. For M = 2, the¢ equation is given by
U = 0, i.e.

¢ 92
,x)+ +hk—=+h—2 =0 22
020 25, "R agz T ag2 22
and the corresponding approximate solution of (1) reads
u= 1o + ﬂ (23)

TE2 ¢
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For M = 3, the functionp should satisfy

¢, hd kP ¢, ¢\ _
(5 w055 055) () ~+(5) =0 24
while the approximate solution of (1) is
u=g+%+u2. (25)

If substituting (9) withug = 0 into (1), we can findi; = 0 anduy, us, u4, us can be taken as
arbitrary functions. Taking

uz =ax Ug = az Uz = uUs = 0 (26)
then the equation fars = 0 reads
2 2 2
6a1+4¢”x s +ﬂ+h¢—y % o (27)

A
wherea; anda, are arbitrary constants. The corresponding approximate solution of (1)
becomes

u=ua+ azé‘z. (28)
In the above discussions, we have fixeds given by equation (14). Actually, similar results
can be obtained for different selectionstgfsay, we can take = &; as

(% 9=\
= (E - 2@) ' @9
Substituting (9) with (29) into (1) and using the same procedure, we can ebtain 2,
2
uo = —2P% = —2%; or uo = 0. (30)
The first three expansion coefficients correspondingyte: —2(¢2/$?) read
Ui = _2(¢3¢Z’Z - ¢xx¢;2)¢f (31)
1
Uz = __6¢4¢2 (4¢x¢?¢xxx - 3¢?¢fx + ¢x¢f¢? + h¢\2¢? + 3¢)‘c‘¢z22 + kd)? - 6¢f¢z¢xx¢zz)
(32)
_ ¢ ([ h 97 ¢\ |, k(¢? ¢
o= g ren3g) (3),72(5) +(5).) 3

For M = 2 or 3, the forms of approximate solutions of (1) are the same as (23) or (25), but the
corresponding functio is given by

4 P brrr — 3P207, + ey p? + hpSp?T + 3pIZ, + kY — 6¢2P Py = O (34)
forM =2 and
¢ h 3 ¢\ L k(9? ¢\
(a*””“*zqs—z)x*h(a)y*z(@)ik(a)z—° &9

for M = 3, respectively. In the same way, if we takg= 0 for&é = &, the resultsread; = 0
anduy, us, us, us being arbitrary functions. Taking, = aj, us = a2 andus = us = 0, one
can obtain the equation ag = 0

120392 ¢.cr + 1802920 Prx — 48D p2Pobox + h$7HT + Bar1p2P? + i T — 24026 b
+3p292, + 3602 P22, + Apeplprrx — 12079 porx + kg2 + 9plpZ, =0  (35)



Invariant expansion and Painlévntegrable models 2725

while the approximate solution of (1) is
u=a+ agéz (36)

up to&4, wherea; anda, are arbitrary constants.

Wheng¢ is z (or y) independent, equation (24) is just tt#et+ 1)-dimensional KP equation
in its Schwarz form. 1% is bothy andz independent then both equation (22) and (24) reduce
back to the(1 + 1)-dimensional Schwarz KdV equation.

4. Painlewe integrability of resulting equations

Itis clearthat (22), (24), (27), (34) and (35) are all conformal invariant. In[12], Lou had pointed
out that many kinds of quite general conformal invariant forms are Pa&inifeggrable. Now

we hope to know whether the real approximate equations, (22), (24), (27), (34) and (35) are
Painlewe integrable or not. Actually, equation (22) is just one of special case in [12]. So (22)
is Painlew integrable. In order to prove the Pairdantegrability of (24), (27), (34) and (35),

we slightly enlarge them to form some more general systems. From equation (24), a slightly
enlarged system has the form

Co(CH+hV2+LC+kW?+4CCyy — 3C2) — C*(Cypx + Ly +aVy +kW,) =0 (37)
C =1L, (38)
V=L, (39)
W, =L,. (40)
Equation (37) can be obtained directly from (24) by using the transformation,

¢ = exp(f) fe=C fy=V fe=w fi=L (41)

as in [12] and equations (38)—(40) are three consistent conditions of the transformation (41).
We call (38)—(40) as an enlarged system of (24) because, for the transformation (41), there
exist three other consistent conditiods, = V., C, = W, andV, = W,, though the relations
Cy = Vy, C; = Wy, andV,, = W,, are guaranteed by (38)—(40). In other words, only a
subset of the solutions of (37)—(40) are related to the solutions of (24).

In the same way, the corresponding enlarged systems of (27), (34) and (35) have the forms

6a1C2+4CC,, —2C* —6C2+LC +hV?+kW? =0 (42)
C, =L, (43)
Vi=L, (44)
W, =L, (45)
CLW*+hV?W* — 6C2W2C, W, — 2C*W* + 4CWAC,,

+kWe +3C*W?2 - 3w4Cc?=0 (46)
C =L, (47)
Vi=L, (48)
W, =L. (49)
and

—hV2W* — LCW* — 6a,C2W* — kW® + 2C*W* — 12C3W2C,, — 18W2C?W.C,
—3WAC2+24W3CC.C, + 48WC3W,C, — 9C*W? + 12C?W3C,,
—36W?C2C2 - 4CW*C,, =0 (50)
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C =L, (51)
W, =L. (53)

respectively. Now using the standard Paigl@nalysis, we can prove that all the enlarged
systems related to (24), (27), (34) and (35) possess the Paipteperty.

After finishing the leading order analysis of (37)—(40), we know tfaL, W and V,
should be expanded as

o0 o0
C= Zochy'—l L= ;‘)L,qw—l
J= J=

o - (54)
W= W/ V=Y V¢!
j=0 j=0
with
Co = ¢ Vo = +¢y Wo = £¢; Lo = *¢;. (55)
Substituting (54) into (37)—(40), we know that the resonances occur at
j=-1,11112 (56)
and the resonance conditionsjat 1, 2 read
C5(—2¢:hxxCo + Cor (p2 + C§) +4C19% — 4CoC1h:) = 0 (57)
Co = Lo, (58)
Vor = Loy (59)
Wor = Lo (60)

C3prrr — CoCorrr — CxCorr — BC1CEPxbrr + Cidpy + kCGWosp. + hC Vo,

+C1, (—Cp? + C3) + CoC, ¢ + Co, (4C1Co9? + 4CSC1)

+¢, ((3C5C2 + 6CICo)¢? — 3C3C, — 6CZCE — C3Lo

+(—kW§ — VEh)Co) = 0. (61)
Obviously, (57)-(61) are satisfied identically because of (55). So the equation system (37)—
(40) possess the Painkeproperty, i.e. the system (37)—(40) is Paigla®egrable and then its

narrowed system (24) is Painkintegrable naturally.
Substituting (54) into (42)—(45), we can see that the resonances occur at

j=-11111 (62)
and the resonance conditionsjat 1 read
—4Co(—Cor¢s +2C5C1+ Copyx — 2C17) =0 (63)
Vor — Loy =0 (64)
Wo — Lo, =0 (65)
Co — Loy = 0. (66)

It is easy to see that all the resonance conditions (63)—(66) are also satisfied. So the equation
system (42)—(45) possess the Paigl@roperty and equation (27) is(a + 1)-dimensional
Painle& integrable model.

In the same way, substituting (54) into (46)—(49), one can see that all five of the needed
resonances located at

j=-1,1111 (67)
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have the forms
—2CoWo(W3¢. Cox + 2W3Coprr — LOWGCoW1¢? — AWSH2C1 + 3C3p. Wo, — 6WoC5C12
—3WoCah, Wo, — 3WECo¢.Co, + BWoC2¢. ¢, W1 + BWECo. . C1

+HAWGCIW + AWSCEC1) = 0 (68)
Co — Loy =0 (69)
Vo — Loy =0 (70)
Wo — Lo, =0 (71)

and they are all satisfied naturally because of (55). That is to say equation (34) is also a
Painlee integrable model. Substituting (54) into (50)—(53), we see that all five of the required
resonances are also located at

j=-11111 (72)
and the resonance conditionsjat 1 read
—15C3Wo, b, + 6C3Wog., + 24CE Wop,Co, — BCEWED., + 9CE Wob, Wo, + 2CoWi s
—18CoW§e: Co: — 9CoWE - Cox + Wi Cox
+W1Co(4CEWE — 36C3¢2 + 54CoWops ¢, — 22Wih?)

+(4CEWE — 18C3p?2 + 18CoWops ¢, — AWEP?)C1Wo = 0 (73)
Coy —Loxr=0 (74)
Voo — Loy =0 (75)
Wo — Lo, = 0. (76)

Having considered (55), equations (73)—(76) are all satisfied. Obviously, the equation system
(50)—(53) possesses the Paideproperty. So equation (35) is also integrable under the
meaning that it possesses a variant form with the Paénpeoperty.

Now we have obtained five new3 + 1)-dimensional models possessing Paiglev
integrability from the(3+1)-dimensional nonintegrable KP equation (1) through the conformal
invariant expansion approach. The solutions of these models can be used to express the
solutions of original3 + 1)-dimensional KP equations approximately in some special ways.

5. Solitary wave solutions

To find some concrete approximation solutions of equation (1), we should solve the Bainlev
integrable models (22), (24), (27), (34) and (35). Because these models are conformal
invariant, it is easy to verify that these conformal invariant equations all possess kink-type
soliton solutions. For model (24), the corresponding kink-type plane soliton solution has the
form

A+ BexpAlix + 1y +13z + wt)

— : (77)
C+DexpAlix +1loy +13z +wt)
When
814 — ki2 — hi2
w=-+-3 2 (78)
I
equation (77) is also a solution of (22) and (34). The corresporidiagiven by
1A+B l1ix + 1y +13z +
£ = exp Alyx + Iy + I3z + wt) (79)

_HA — BexpAlx + Ly +1lsz +wt)’
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While the related approximation solution of (1) reads
J(A+ BexpAlyx + 1y +l3z+ wt))? Ag

— - = 80
" YA+B exp Alrx + Iy + laz + wt))? 61§ (80)
where
Ay = —8IF + hi3 + wly +ki3. (81)
The solution (80) can be written in the standard form
Ay B\ Y2\ \ 2
u= —<2zf + —2> + zf(sech(zlx +1lpy + 13z + wt +1n <—> )) : (82)
6I5 A
If the arbitrary constants andw are taken as
— (162 + h) (=121 + 2k))/? 41% +13h + 12k
12= ( ( 1 )(2 1 3 )) W= 1 2 3 (83)
167 +h 2
andu given by (82) becomes an exact solution of (1). We can also verify that
5 A — Bexp2lix +loy + I3z + (—6l2ay + 817 — hi3 — ki3)t /1) (84)

A+ Bexplix + 1y +laz + (—6l2ay + 813 — hiZ — ki3)t /1)
is a kink-type plane solitary wave solution of both (27) and (35). The correspoadsrgjven
by
2 A— Bexplyix + oy + I3z + (—6l2ay + 8l — hi3 — ki3)t/1) (85)
I, A+B exp 2([1)6 +ly+l3z+ (—6[%(11 + 811l — hl% — klg)l‘/ll)
i =1, for (27) andi = 3 for (35). In this case, the approximation solution of (1) reads

s:

u= a1+a2$2

¢ B 1/2
=a+ ‘;—22<1 — secht <llx + Doy + I3z + (—6l2ay + 8l — hiZ — klg)l— +In <Z> ))
1

| (86)
If the arbitrary constants; anda, are taken as
ay = 22 ap = —2I31? (87)
u given by (86) is an exact solution of equation (1). Generally, the approximate procedure is
valid for & being small. In the plane soliton cagegiven by (79) is small which meamsgiven

by (80) is valid near the soliton centre. While thgiven by (85) is small and then means that
u given by (86) is only valid far away from the soliton centre.

6. Summary and discussion

In this paper we have proposed a simple method to solve higher-dimensional nonlinear
problems by means of the Painéeintegrable models in the same dimensions. Taking the
(3 + D-dimensional KP equation as a concrete example, we have obtained (®any)-
dimensional Painlevintegrable models. The first one is just a special case proposed by Lou
in [12]. Because the resulting equations possess conformal invariance, the plane solitary wave
solutions of the model can be obtained easily. Generally, the solitary waves are approximate for
the original model. If the arbitrary constants are selected suitably, the approximate solutions
become exact.

In [12-14], Lou has proposed many types of conformal invariant equations and those
equations are Painlévintegrable. There are two important problems left in his paper.
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(a) Can one find the physical applications of those models or can one find some types of
models with conformal invariance and the Pai@eroperty from real physical models? (b)

Are those Painle¥integrable models integrable under other meanings? In this paper, we have
offered a positive answer for the first question. Using the conformal invariant expansion to any
real physical model in any dimensions, we can obtain some approximate solutions by means
of the Painle@ models. The second question is still open. It is worth further study to see
whether the models obtained here are integrable under other traditional methods.
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